НОВЫЕ НАХОДКИ КОЛОНИЙ ИНТРОДУЦИРОВАННОГО ВИДА СЕРАЕА HORTENSIS (MÜLLER, 1774) В ГОРОДЕ МИНСКЕ И

КОЛОНИЙ ИНТРОДУЦИРОВАННОГО МИНСКОЙ ОБЛАСТИ (БЕЛАРУСЬ): СПЕЦИФИКА ФЕНОТИПИЧЕСКОЙ СТРУКТУРЫ

Annotasiya.

В статье анализируется фенотипическая структура вида Cepaea hortensis, распространенного на территории Минской области и города Минска. Сообщается, что этот вид произошел из Европы через саженцы декоративных кустарников и что окраска раковины полиморфна. В популяциях декоративных деревьев и кустарников Минска и Минской области отмечено присутствие желтокорневого вида Cepaea hortensis и большое количество пяти полосатых и неполосатых вариантов.

Ключевые слова:

моллюск, г.Минск, популяция, декоративных деревьев, полиморфизм, фенотип.

Садовая улитка, Cepaea hortensis, (Müller, 1774) (Gastropoda, Pulmonata, Helicidae) – это вид брюхоногих моллюсков, имеющих центрально-европейское происхождение [7]. В Беларуси этот вид появился, предположительно, в конце XX века, как и на территории сопредельных стран, в результате завоза саженцев декоративных кустарников из Европы [7]. В настоящее время колонии садовых улиток обнаруживаются в разных населенных пунктах республики в парках, приусадебных участках, зеленых насаждениях и т. д. Обладая полиморфизмом окраски раковины С. hortensis, как и другие виды рода Сераеа, является популярным объектом популяционно-генетических исследований [2-7]. В связи с обнаружением новых колоний этого вида в г. Минске и Минской области целью данной работы стал анализ их фенотипической структуры.

Сбор материала осуществлялся в пяти локалитетах:

№1. д. Затитова Слобода (Пуховичский район, Минская область), окрестности ул. Полевая, 16.04.2021 г. Лесной массив, травянистая растительность. Объем выборки – 51 особь. Col. Климович А.

№2. г. Марьина Горка (Пуховичский район, Минская область), ул. Малиновая, 26.05.2022 г. Небольшие кустарники и травянистая растительность вдоль ограждений земельных участков и придорожной полосы. Объем выборки – 42 особей. Col. Мась А.Д.

№3. д. Тарасово (Минский район, Минская область), перекресток между ул. Звездная и Минская, ул. Тенистая, 11.06.2021 г. Заросли винограда девичьего. Объем выборки – 60 особей. Col. Жачковская

A.

№4. г. Минск, берег р. Мышка, ул. Алибегова, д. 12, 22.07.2019 г. Стволы деревьев. Объем выборки -108 особей. Соl. Авимова К.

№5. г. Минск, Лошицкий парк, 20.06.2022 г. Травянистая растительность. Объем выборки – 72 особи. СоІ. Мась А.Д.

Для выделения фенотипов окраски раковины применялась стандартная методика (Clarke B. C., 1960 по [3]). Сравнительный анализ фенетической структуры проводился с использованием индексов, предложенных Л.А. Животовским [1].

Исследованные колонии отличались небольшим фенетическим разнообразием. Во всех выборках были представлены только раковины желтого цвета. Количество выделенных фенотипов по степени опоясанности было невелико: по 2 – в г. Марьина Горка и в окрестностях р. Мышка (г. Минск), по 4 – в выборках из д. Затитова Слобода, д. Тарасово и Лошицкого парка (г. Минск) (таблица). В колониях из окрестностей р. Мышка и Лошицком парке г. Минска преобладали бесполосые раковины, которые имели достаточно высокую частоту и у моллюсков из д. Тарасово. Раковины с пятью раздельными полосами доминировали в выборках из г. Марьина Горка, д. Затитова Слобода и д. Тарасово (рисунок). С высокой частотой они были представлены и в популяции из Лошицкого парка г. Минска. Остальные варианты полосатости встречались редко и не во всех анализируемых выборках (таблица). Стоит обратить внимание, что по одной особи в выборках из Лошицкого парка в г. Минске и из д. Затитова Слобода имели редкие для восточноевропейских колоний C. hortensis фенотипы 12045 и [1]2045, что может быть связано с неблагоприятным воздействием внешней среды [7].

Фенотипический состав и индексы фенетического разнообразия исследованных колоний Сераеа hortensis (% / количество экземпляров)

Фенотип	Регион				
	д. Затитова Слобода	г. Марьина Горка	д. Тарасово	г. Минск, р. Мышка	г. Минск, Лошицкий парк
00000	45,1 / 23	45,23 / 19	43,3 /26	95,37 / 103	61,1 / 44
12045	-	-	3,3 / 2	-	5,6 / 4
[1]2045	1,96 / 1	-	-	-	-
12345	49,02 / 25	54,76 / 23	51,7 / 31	4,63 / 5	25,0 / 18
[1]2345	3,92 / 2	-	-	-	-
(12)345	-	-	1,7 / 1	-	8,3 / 6
$\mu \pm S_{\mu}$	2,924±0,248	1,995±0,014	2,850±0,235	1,420±0,087	3,260±0,184
h±S _h	0,269±0,062	0,0025	0,290±0,055	0,290±0,044	0,185±0,044

Уникальной особенностью популяций из г. Марьина Горка и д. Затитова Слобода является присутствие моллюсков с бесполосыми раковинами, имеющими пять прозрачных (гиалозонатных) полос

(рисунок), что указывает на общность происхождения этих колоний, обитающих на территории Пуховичского района.

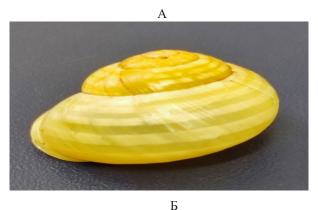


Рис. Раковины *Cepaea hortensis*: с пятью раздельными полосами (A) и бесполосая с гиалозонатными полосами (Б)

Вероятнее всего, колонии в этих населенных пунктах сформировались в результате завоза улиток или их яиц с саженцами декоративных растений из одного и того же садового центра. В работе N.V. Gural-Sverlova, R.I. Gural указывалось, что такие раковины с гиалозонатными полосами иногда встречаются в колониях садовых улиток на западе Украины [7].

На основании значений показателей внутрипопуляционного разнообразия μ – среднего числа морф, и h – доли редких морф, был проведен анализ внутрипопуляционной изменчивости популяций С. hortensis (таблица). Наиболее высокий уровень фенетического разнообразия был отмечен в колонии из Лошицкого парка – значение показателя µ здесь было выше всего и составило 3,26±0,02. В колониях из д. Тарасово и д. Затитова Слобода, несмотря на равное с выборкой из Лошицкого парка число выделенных морф, значения µ были несколько ниже. Самый низкий показатель среднего числа морф -1.420 ± 0.14 , был получен для выборки из окрестностей р. Мышка (г. Минск), что связано с меньшим количеством выделенных фенотипов. Наиболее выровненным, но, в то же время, и самым обедненным был фенетический состав колонии из г. Марьина Горка, о чем свидетельствует значение µ, практически равное числу выделенных морф 1,955 \approx 2. Это связано с тем, что в данной выборке было выделено всего два фенотипа, имевшие очень близкие частоты. Соответственно, колония из г. Марьина Горка отличалась крайне низким

значением числа редких морф, так как, по сути, редкие фенотипы в ней отсутствовали (таблица).

Для сравнения фенофондов исследуемых популяций C. hortensis нами был использован показатель сходства r, значения которого были достаточно высоки и варьировали от 0,7 до 0,975. Наибольшим сходством фенотипической структуры обладали колонии из д. Затитова Слобода и r. Марьина Горка, а также из r. Марьина Горка и д. Тарасово. Самое низкое значение показателя r-0,7, было получено при сравнении фенофондов колоний из д. Затитова Слобода и Лошицкого парка в r. Минске.

Таким образом, в результате анализа фенотипической структуры популяций интродуцированного вида брюхоногих моллюсков — *C. hortensis*, населяющих декоративные древесно-кустарниковые насаждения г. Минска и Минской области, установлено присутствие в них исключительно раковин желтого цвета и высокая частота или доминирование вариантов с пятью раздельными полосами либо бесполосых. Высокая доля бесполосых раковин, которая отмечалась так же и в колониях садовой улитки из Украины, как предполагают, может быть связана с влиянием более континентального климата регионов интродукции по сравнению с нативным ареалом *C. hortensis* [4].

Список литературы

1. Животовский Л.А. Показатели популяционной изменчивости по полиморфным признакам // Фенетика популяций. М: . Наука. 1982: С. 38–44. 2. Круглова О.Ю., Колесник В.Г. Особенности фенотипической структуры интродуцированных популяций садовой улитки Cepaea hortensis (O. F. Müller, 1774) (Gastropoda, Pulmonata, Helicidae) в условиях г. Минска и Минского района // Труды Белорусского государственного университета. – 2016. Т. 11, ч. 2. С. 291–298. 3. Сверлова Н.В. Влияние антропогенных барьеров на фенотипическую структуру популяций Cepaea hortensis (Gastropoda, Pulmonata) в условиях города // Vestnik zoologii. 2002. T. 36. Nº 5. C. 61-64. 4. Сверлова Н.В., Хлус Л.Н., Крамаренко С.С. и др. Фауна, экология и внутривидовая изменчивость наземных моллюсков в урбанизированной среде. Львов, 2006. 226 с. 5. Cameron R. A. D. The poor relation? Polymorphism in Cepaea hortensis (O. F. Müller) and the evolution Megalab // Journal of Molluscan Studies. 2013. No 79. P. 112-117. 6. Egorov R. The first record of introduced snail Cepaea hortensis (Müller, 1774) (Stylommatophora: Helicidae) in the central part of European Russia // Ruthenica. 2015. Vol. 25. No. 3. P. 93-97. 7. Gural-Sverlova N.V., Gural R.I. Shell banding and colour polymorphism of introduced snail Cepaea hortensis (Gastropoda, Pulmonata, Helicidae) from some parts of Eastern Europe // Ruthenica, Russian Malacological Journal.

2021. Vol. 31, No. 2. P. 59-76.